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How to analyse single-cell proteomics data and focus on the underlying
biology? Your results are only as good as your method and software.

Mass spectrometry-based single-cell proteomics (SCP) has become a credible
player in the single-cell omics arena thanks to substantial technical
improvements that have pushed the boundaries of sensitivity and throughput.
But what should one do once the precious data have been acquired, often at
great cost? Reviewing the SCP literature doesn’t provide much help, as every
lab tends to run their own in-house, either overly complex or unrealistically
trivial and undocumented analysis pipeline. When facing complex data, best is
to start with simpler but principled analyses approaches, such as the scplainer
method. The goal of scplainer is to move the tension point from how to
process SCP data to explain it in the light of the biological question. In this
talk, I will use SCP to illustrate how to approach, as a bioinformatician,
complex data and it’s underlying biological complexity, emphasising the role of
research software engineering and computational science.

Slides: https://lgatto.github.io/pub/2025CompSysBio.pdf

https://lgatto.github.io/pub/2025CompSysBio.pdf


Your results are only as good as your method and software.

My analysis is only as good as the explanation and the
software to go with it.

Prof Susan Holmes



Is a computational researcher coding doing research?

Better Software, Better Research
Software Sustainability Institute

What is good software? What is good data analysis?

Your results are only as good as your method, software
and users.
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What is a good data analysis?



Simpler is better



▶ Data analysis should be as simple as possible, but no simpler.
▶ Data analysis should be as complex as needed, but not more

complex.



Software for data analysis



Software for data analysis

▶ Compose simple pipelines when possible
▶ Compose more complex pipelines when necessary
▶ Enable transparency and reproducibility



Users!



Users!

1. knowledgeable in MS-based (single-cell) proteomics
2. has basic knowledge of data analysis
3. some R (or Python, ...) experience
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Single-cell technologies unravel cellular heterogeneity

Figure: Cell types and cell states, subpopulation identification,
differentiation trajectories (in the absence of known markers).
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Single-cell proteomics

FC scRNA-Seq SCP
features 10 104 103

cells 106 104 103

samples 10 - 100 1 - 10 1 . . .
sample/cell
throughput

feature
throughput

functional

▶ RNA → intention vs. Protein → action
▶ Inference of direct regulatory interactions with minimal

assumptions (Slavov, 2022; Hu et al., 2023).
▶ Post-translational modifications
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Material (1)

The SCoPE2 dataset
▶ Seminal dataset published

by Specht et al. (2021)
▶ 1096 macrophages, 394

monocytes (after QC)
▶ 9354 peptides, 3042

proteins
▶ Pre-print, data and code

available since 2019



Methods

Failed runs
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Figure: Overview of the key steps performed in the SCoPE2
pipeline (Vanderaa and Gatto, 2021). Blue boxes: QFeatures. Red
boxes: scp. Gray box: sva::ComBat.
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Challenge 1: batch effects
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Figure: PCA for the first four components. Each point represents a
single-cell and is colored according to the corresponding cell type
(Vanderaa and Gatto, 2021).



Challenge 2: missing data
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Figure: Missing data is the consequence of biological and technical
components (Vanderaa and Gatto, 2021, 2023b).



Challenge 3: 1 + 2
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Figure: Influence of batch on data missingness (Vanderaa and Gatto,
2021).



Data analyses review
▶ How do researches process their data?
▶ How do they deal with batch effects?
▶ How do they deal with missing data?
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Figure: SCP.replication: systematic reproduction/replication of
published SCP studies using the scp package - one workflow per
paper/lab.. (Vanderaa and Gatto, 2023a).



Problem
▶ Complex data, many alternative pipelines.
▶ Different pipelines produce different results (see Vanderaa

and Gatto (2023a)).
▶ Little control/understanding of the implications of what is

done to the data.

Solution: a principled approach
▶ KISS (Keep it simple stupid!), as simple as possible.
▶ Use what we know to model our data.
▶ Control what we do, quantify effects.
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Given that we aren’t sure about the effect of data processing. . .

Let’s start with minimally processed data
▶ Remove low quality precursors and cells
▶ Aggregate from precursors into peptides
▶ log2-transform
▶ Remove features with too many NAs
▶ No imputation

And use ANOVA–simultaneous component analysis (ASCA)-like
methods (Thiel et al., 2017).
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(1) Linear modelling

y = β0 + β1 × group + ϵ

y = β0 + β1 × group + βi × batchi + ϵ

y = scaling factor + β0 + β1 × group + βi × batchi + ϵ

(2) Quantify the effects’ contributions

(3) Principal Component Analysis

On effect + residual matrices (of dimensions features × samples).



Material (2)

The nPOP dataset
▶ Data from Leduc et al.

(2022)
▶ nano-ProteOmic sample

Preparation
▶ 877 monocytes, 878

melanoma cells
▶ 19374 peptides, 3348

proteins
▶ Availability of data and

code



Figure: Melanoma cells and monocytes (left) acquired across multiple
acquisition batches (right) (Leduc et al., 2022).



y = MS acquisition + TMT channel + Cell type + ϵ

Figure: We are now in a position to quantify known and unknown
effects: percentages of explained variances of our explained (known) and
unexplained (residuals) effects. NB: low biological variance ̸= low quality!
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Figure: We are now in a position to quantify known and unknown
effects: percentages of explained variances of our explained (known) and
unexplained (residuals) effects. NB: low biological variance ̸= low quality!



PCA on effect matrices

y = MS acquisition + TMT channel + Cell type + ϵ

Figure: PCA on the MS acquisition effect
matrix.
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Figure: PCA on the TMT channel effect
matrix.



PCA on effect matrices

y = MS acquisition + TMT channel + Cell type + ϵ

Figure: PCA on the Cell type effect matrix.



PCA on effect matrices
y = MS acquisition + TMT channel + Cell type + ϵ

Figure: PCA on the residuals effect
matrix.



Does it work: negative control

Do we have any MS
acquitison batch
leftovers in the cell
type effect?



Does it work: positive control

y = MS acquisition + TMT channel + ϵ



Does it work: positive control
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Does it work: new biology in the residuals

y = MS acquisition + TMT channel + Cell type + ϵ

Figure: Melanoma subpopulations: transcriptomic signature associated
with a cell state that is more likely to resist treatment by the cancer drug
vemurafenib (clusters A and B from Leduc et al. (2022)).



Does it work: new biology in the residuals

y = MS acquisition + TMT channel + Cell type + ϵ

Figure: Melanoma subpopulations: transcriptomic signature associated
with a cell state that is more likely to resist treatment by the cancer drug
vemurafenib (clusters A and B from Leduc et al. (2022)).
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Figure: scp package - scplainer: using linear models to understand
mass spectrometry-based single-cell proteomics data (Vanderaa and
Gatto, 2025).
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What are best RSE practice?
▶ . . .
▶ . . .
▶ . . .

Our software
▶ https://bioconductor.org/packages/QFeatures
▶ https://bioconductor.org/packages/scp
▶ https://bioconductor.org/packages/scpdata

https://bioconductor.org/packages/QFeatures
https://bioconductor.org/packages/scp
https://bioconductor.org/packages/scpdata


What are best RSE practice?
▶ Coding practice, style guide, design principles,

community/ISO/IEC standards, unit and integration testing,
CI, code/peer review, automation, version control, . . .

▶ Documentation, tutorials, courses, user support, . . .
▶ Supportive community, code of conduct, . . .

Our software
▶ https://bioconductor.org/packages/QFeatures
▶ https://bioconductor.org/packages/scp
▶ https://bioconductor.org/packages/scpdata

https://bioconductor.org/packages/QFeatures
https://bioconductor.org/packages/scp
https://bioconductor.org/packages/scpdata
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Conclusions
▶ Many experimental and computational workflows. Different

workflows → different results.
▶ We need a flexible and principled computational approach

→ control what we do, to guarantee the validity or our results.
▶ Residuals – what we don’t know (yet), generally what we are

most interested in.
▶ Showed component analysis, differential abundance, analysis

of variance. Also clustering, trajectory analysis, ... based on
the batch-corrected/normalised effect matrices.

▶ Limitation: multi-patient/condition designs - mixed effects
(Sticker et al., 2020) and pseudo-bulking.

▶ Work openly and reproducibly! (Markowetz, 2015).
▶ Importance of the experimental design (Gatto et al., 2023).
▶ Better methods, better software, better research.
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Discussion points
▶ Your results are only as good as your method, software and

users.
▶ My analysis is only as good as the explanation and the

software to go with it. – Susan Holmes EuroBioc2025,
Barcelona (September 2025)

▶ Is a computational researcher coding doing research?
▶ What is good software? What is good data analysis?
▶ Should all software meet the highest standard? Should

research output be reproducible?
▶ A big computer, a complex algorithm and a long time does

not equal science. – Robert Gentleman SSC 2003, Halifax
(June 2003)

▶ What about LLM-generated code?

Slides: https://lgatto.github.io/pub/2025CompSysBio.pdf
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