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How to analyse single-cell proteomics data and focus on the underlying
biology? Your results are only as good as your method and software.

Mass spectrometry-based single-cell proteomics (SCP) has become a credible
player in the single-cell omics arena thanks to substantial technical
improvements that have pushed the boundaries of sensitivity and throughput.
But what should one do once the precious data have been acquired, often at
great cost? Reviewing the SCP literature doesn't provide much help, as every
lab tends to run their own in-house, either overly complex or unrealistically
trivial and undocumented analysis pipeline. When facing complex data, best is
to start with simpler but principled analyses approaches, such as the scplainer
method. The goal of scplainer is to move the tension point from how to
process SCP data to explain it in the light of the biological question. In this
talk, | will use SCP to illustrate how to approach, as a bioinformatician,
complex data and it's underlying biological complexity, emphasising the role of
research software engineering and computational science.

Slides: https://lgatto.github.io/pub/2025CompSysBio.pdf


https://lgatto.github.io/pub/2025CompSysBio.pdf

Your results are only as good as your method and software.

My analysis is only as good as the explanation and the
software to go with it.

Prof Susan Holmes



Is a computational researcher coding doing research?
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Is a computational researcher coding doing research?

Better Software, Better Research

Software Sustainability Institute

What is good software? What is good data analysis?

Your results are only as good as your method, software
and users.
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Methods, software and users



What is a good data analysis?



Simpler is better




» Data analysis should be as simple as possible, but no simpler.

» Data analysis should be as complex as needed, but not more
complex.



Software for data analysis



Software for data analysis

» Compose simple pipelines when possible
» Compose more complex pipelines when necessary

» Enable transparency and reproducibility



Users!



Users!

1. knowledgeable in MS-based (single-cell) proteomics
2. has basic knowledge of data analysis

3. some R (or Python, ...) experience



Outline

Single-cell proteomics: introduction



Single-cell technologies unravel cellular heterogeneity
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Figure: Cell types and cell states, subpopulation identification,
differentiation trajectories (in the absence of known markers).
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Single-cell proteomics

FC scRNA-Seq  SCP
features | 10 10* 103
cells 106 10 103
samples | 10 - 100 1-10 1...
sample/cell  feature functional
throughput  throughput

» RNA — intention vs. Protein — action

» Inference of direct regulatory interactions with minimal
assumptions (Slavov, 2022; Hu et al., 2023).

» Post-translational modifications
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SCP data/analysis - round 1



Material (1)

The SCoPE2 dataset

» Seminal dataset published
by Specht et al. (2021)

» 1096 macrophages, 394 ?
monocytes (after QC) g

» 9354 peptides, 3042
proteins

SCoPE2

SampleType

Macrophage
Monocyte

» Pre-print, data and code
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Methods
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Figure: Overview of the key steps performed in the SCoPE2
pipeline (Vanderaa and Gatto, 2021). Blue boxes: . Red
boxes: . Gray box:
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Computational challenges



Challenge 1: batch effects
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Figure: PCA for the first four components. Each point represents a
single-cell and is colored according to the corresponding cell type

(Vanderaa and Gatto, 2021).

N



Challenge 2: missing data
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Figure: Missing data is the consequence of biological and technical
components (Vanderaa and Gatto, 2021, 2023b).



Challenge 3: 1 + 2
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Data analyses review

» How do researches process their data?
» How do they deal with batch effects?
» How do they deal with missing data?



A Feature quality control B sample quality control C  Log-transformation D imputation
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Figure: SCP.replication: systematic reproduction/replication of
published SCP studies using the scp package - one workflow per
paper/lab.. (Vanderaa and Gatto, 2023a).
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Problem
» Complex data, many alternative pipelines.

» Different pipelines produce different results (see Vanderaa
and Gatto (2023a)).

> Little control/understanding of the implications of what is
done to the data.



Problem
» Complex data, many alternative pipelines.

» Different pipelines produce different results (see Vanderaa
and Gatto (2023a)).

» Little control/understanding of the implications of what is
done to the data.

Solution: a principled approach

» KISS (Keep it simple stupid!), as simple as possible.
» Use what we know to model our data.

» Control what we do, quantify effects.
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A principled approach to SCP data analysis - round 2



Given that we aren't sure about the effect of data processing. ..
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Let's start with minimally processed data
» Remove low quality precursors and cells
> Aggregate from precursors into peptides
» logy-transform
> Remove features with too many NAs
>

No imputation



Given that we aren't sure about the effect of data processing. ..

Let's start with minimally processed data
» Remove low quality precursors and cells
> Aggregate from precursors into peptides
» logy-transform
> Remove features with too many NAs
» No imputation

And use ANOVA-simultaneous component analysis (ASCA)-like
methods (Thiel et al., 2017).



(1) Linear modelling
y = PBo+ P1 x group + €
y = Bo + 1 X group + B; X batch; + ¢
y = scaling factor + [y + 51 X group + [5; X batch; + €

(2) Quantify the effects’ contributions

(3) Principal Component Analysis

On effect + residual matrices (of dimensions features x samples).



Material (2)

The nPOP dataset

>

Data from Leduc et al.
(2022)

nano-ProteOmic sample
Preparation

877 monocytes, 878
melanoma cells

19374 peptides, 3348
proteins

Availability of data and
code
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Figure: Melanoma cells and monocytes (left) acquired across multiple
acquisition batches (right) (Leduc et al., 2022).
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y = MS acquisition+ TMT channel 4+ +€



y = MS acquisition+ TMT channel 4+ +€
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Figure: We are now in a position to quantify known and unknown
effects: percentages of explained variances of our explained (known) and
unexplained (residuals) effects. NB: low biological variance # low quality!



PCA on effect matrices

y = MS acquisition + TMT channel + Cell type + €

60
MS acquisition L
enLo0z19 MS acquisition
10
eonzes eAL00219
2
e watooz07 5
g eAL00244
o WAL00259
oo ) WAL00207
20 a 0
PC1 (49.9%) WAL00233
@ 40 % h- : k
2 " WAL00259
= 3 :
g 30 -30 -
o o
g0 2o WAL00286
c
o
® 10
< -40 0 40
g [ =
0
X & @ &
o \;}o e\\dQ & ] o
& .
<& T ¢ Figure: PCA on the MS acquisition effect
~

matrix.



PCA on effect matrices

y = MS acquisition + TMT channel + Cell type + €
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PCA on effect matrices

y = MS acquisition + TMT channel + Cell type + €
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PCA on effect matrices

y = MS acquisition + TMT channel + Cell type + ¢
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matrix.




Does it work: negative control

Do we have any MS
acquitison batch
leftovers in the cell
type effect?
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Does it work: positive control

y = MS acquisition + TMT channel 4 €



Does it work: positive control

y = MS acquisition + TMT channel 4 €
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Does it work: new biology in the residuals

y = MS acquisition+ TMT channel + +€



Does it work: new biology in the residuals

y = MS acquisition + TMT channel + Cell type + €
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Figure: Melanoma subpopulations: transcriptomic signature associated
with a cell state that is more likely to resist treatment by the cancer drug
vemurafenib (clusters A and B from Leduc et al. (2022)),
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Implementation - scp and scplainer
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Figure: scp package - scplainer: using linear models to understand
mass spectrometry-based single-cell proteomics data (Vanderaa and
Gatto, 2025).



TSNE2

Raw (unmodelled)

Batch corrected

TSNE2

8

-0 -5 5 10

0
TSNEL

Monocyte <---> Melanoma cell

50

Explained variance

~log10(padi)

Hspoose,

- RuLGAPRL

L, L
coroe O LS

0
log (Fold change)

PC2 (19.9%)

APCA on Celltype

05

-05

00
PC1 (38%)

Data set

O derks_Q-Exactive
O derks_imsTOFSCP
O leduc_plexDIA

Model variable

Residuals
Normalization Factor

Baich
Label
Biology

Celltype
Melanoma
Monocyte
PDAC

Figure: scplainer — variance, differential and component analysis,
integration



What are best RSE practice?
> ...
> ...
> ...

Our software
> https://bioconductor.org/packages/QFeatures
» https://bioconductor.org/packages/scp
» https://bioconductor.org/packages/scpdata


https://bioconductor.org/packages/QFeatures
https://bioconductor.org/packages/scp
https://bioconductor.org/packages/scpdata

What are best RSE practice?

» Coding practice, style guide, design principles,
community/ISO/IEC standards, unit and integration testing,
Cl, code/peer review, automation, version control, ...

» Documentation, tutorials, courses, user support, ...

» Supportive community, code of conduct, ...

Our software
> https://bioconductor.org/packages/QFeatures
» https://bioconductor.org/packages/scp
> https://bioconductor.org/packages/scpdata


https://bioconductor.org/packages/QFeatures
https://bioconductor.org/packages/scp
https://bioconductor.org/packages/scpdata
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Conclusions
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>

Many experimental and computational workflows. Different
workflows — different results.

We need a flexible and principled computational approach
— control what we do, to guarantee the validity or our results.

Residuals — what we don't know (yet), generally what we are
most interested in.

Showed component analysis, differential abundance, analysis
of variance. Also clustering, trajectory analysis, ... based on
the batch-corrected /normalised effect matrices.

Limitation: multi-patient/condition designs - mixed effects
(Sticker et al., 2020) and pseudo-bulking.
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>
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Many experimental and computational workflows. Different
workflows — different results.

We need a flexible and principled computational approach
— control what we do, to guarantee the validity or our results.

Residuals — what we don't know (yet), generally what we are
most interested in.

Showed component analysis, differential abundance, analysis
of variance. Also clustering, trajectory analysis, ... based on
the batch-corrected /normalised effect matrices.

Limitation: multi-patient/condition designs - mixed effects
(Sticker et al., 2020) and pseudo-bulking.

Work openly and reproducibly! (Markowetz, 2015).
Importance of the experimental design (Gatto et al., 2023).

Better methods, better software, better research.
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Discussion points

» Your results are only as good as your method, software and
users.

> My analysis is only as good as the explanation and the
software to go with it. — Susan Holmes EuroBioc2025,
Barcelona (September 2025)

P Is a computational researcher coding doing research?

v

What is good software? What is good data analysis?

» Should all software meet the highest standard? Should
research output be reproducible?

> A big computer, a complex algorithm and a long time does
not equal science. — Robert Gentleman SSC 2003, Halifax
(June 2003)

» What about LLM-generated code?

Slides: https://lgatto.github.io/pub/2025CompSysBio.pdf
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